Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract It is widely accepted that Arctic amplification—accelerated Arctic warming—will increasingly moderate cold air outbreaks to the mid-latitudes. Yet, an increasing number of recent studies also argue that Arctic amplification can contribute to more severe winter weather. Here we show that the temperature of cold extremes across the United States east of the Rockies, Northeast Asia and Europe have remained nearly constant over recent decades, in clear contrast to a robust Arctic warming trend. Analysis of trends in the frequency and magnitude of cold extremes is mixed across the US and Asia but with a clearer decreasing trend in occurrence across Europe, especially Southern Europe. This divergence between robust Arctic warming and no detectable trends in mid-latitude cold extremes highlights the need for a better understanding of the physical links between Arctic amplification and mid-latitude cold extremes.more » « less
-
Mid-latitude Northern Hemisphere extreme cold events continue to occur despite overall winter warming trends. These events have been linked to weakened stratospheric polar vortex (SPV) states. In this study, we analyze both the upper and lower polar stratosphere for links to extreme winter cold and snow in the continental US, finding two SPV variations of interest. The first features an upper-level vortex displaced toward western Canada and linked to northwestern US severe winter weather. The second features a weakened upper-level vortex displaced toward the North Atlantic and linked to central-eastern US severe winter weather. Both variations feature lower-level stretched vortices and stratospheric wave reflection. Since 2015, a northwestward shift in severe winter weather across the US is concurrent with an increase in the frequency of the westward-focused variation relative to the eastward-focused variation and a shift to more negative phases of the El Niño–Southern Oscillation.more » « lessFree, publicly-accessible full text available July 11, 2026
-
Abstract Northeastern US heat waves have usually been considered in terms of a single circulation pattern, the high-pressure circulation typical of most heat waves occurring in other parts of the world. However, k-means clustering analysis from 1980–2018 shows there are four distinct patterns of Northeast heat wave daily circulation, each of which has its own seasonality, heat-producing mechanisms (associated moisture, subsidence, and temperature advection), and impact on electricity demand. Monthly analysis shows statistically-significant positive trends occur in late summer for two of the patterns and early summer for a third pattern, while the fourth pattern shows a statistically significant negative trend in early summer. These results demonstrate that heat waves in a particular geographic area can be initiated and maintained by a variety of mechanisms, resulting in heat wave types with distinct impacts and potential links to climate change, and that pattern analysis is an effective tool to distinguish these differences.more » « less
An official website of the United States government
